
Authorize.NET Technical Updates

06/3/2016 Page 1

Authorize.NET Technical
Updates

A White Paper

06/03/2016

eGrove Systems Corporation

Authorize.NET Technical Updates

06/3/2016 Page 2

Contents

S.No Particulars Page No.

1 Introduction 3

2 Problem Statement 3

3 Proposed Solution (s) 3

 Akamai SureRoute
3

 Transaction and Batch Ids 4

 RC4 Cipher Disablement 4

 TLS Remediation for PCI DSS Compliance
5

4 Summary 6

Authorize.NET Technical Updates

6/3/2016 Page 3

Introduction

Authorize.Net is a payment gateway

service provider allowing merchants to
accept credit card and electronic check
payments through their Web site and over
an IP (Internet Protocol) connection.

In September 2004, Authorize.Net's servers
were hit by a Distributed Denial of Service
(DDoS) attack. The DDoS attack lasted for
over one week and caused a virtual shut
down of the payment gateway's service.
The attackers demanded money from
Authorize.net in exchange for stopping the
attack.

On July 2, 2009, 11pm, the entire web
infrastructure for Authorize.net (main
website, merchant gateway website, etc.)
went offline and stayed down all morning
July 3, 2009. None of the over 200,000
merchants who use Authorize.net payment
gateway were able to process credit cards.

Problem Statement

Over the next couple of months,

Authorize.Net is making several updates to
our systems that you need to be aware of.
They are all technical in nature and may
require the assistance of your web
developer or shopping cart/payment
solution provider.

The following is a list of authorize.Net
technical updates,

 Akamai SureRoute.

 Transaction and Batch Ids.

 RC4 Cipher Disablement.

 TLS Remediation for PCI DSS
Compliance.

Proposed Solution(s)

Following are the proposed solutions

for each technical updates from
Authorize.NET.

Akamai SureRoute:

Akamai is a third-party cloud

network service that routes and
delivers Internet traffic. They provide a
distributed network of servers and over
100,000 dynamic IP addresses, any of
which could be used at any time.

What this means is that Authorize.net
are changing how they route requests
to the gateway in order to process.
Rather than submitting the request
directly to the system, they are routing
them through a cloud service called
Akamai. The reason for doing that is
that it creates multiple routes to the
Gateway, rather than relying on a single
route, so if one of those routes has
technical issues, the requests can be re-
routed and still reach the gateway,
which should improve the uptime of
the Gateway.

Although Authorize.net have created
some new URLs which can use the
Akamai SureRoute system now, the
existing URLs that MemberGate submits
requests too, will automatically be
updated in June 2016 to take advantage
of the new service, so no update should
be required to the code. On June 30th
2016, Authorize.net will update the
existing URLs to go through the Akamai

Authorize.NET Technical Updates

6/3/2016 Page 4

system, not deprecate them. Therefore,
no action is needed. You can change
your URLs now to take advantage of the
better reliability of the Akamai service
but it is not in any way necessary. Here
is how you make the change, which can
be done today.

1. Log into the Administration Console

of your Magento site.
2. Navigate to the System

Configuration page.
3. Navigate down to the Payment

Methods section on the left. It is far
down the list so don’t worry if you
don’t see it right away.

4. Expand the Authorize.net section of
configuration and find the setting
for “Gateway URL.” This is what we
will need to change.

5. Change the setting based on the
table below, save and relax! You are
all ready for the Authorize.net
changes in 2016.

Transaction and Batch IDs:

In the coming months, due to

system updates, it will be possible to
receive Authorize.Net IDs (Transaction
ID, Batch ID, etc.) that are not in
sequential order.

For example, currently, if you receive a
Transaction ID of "1000," you could
expect that the next Transaction ID
would not be less than 1000. However,
after the updates, it will be possible to
receive a Transaction ID less than the
one previously received.

If your system contains any
functionality that accepts Authorize.Net
generated IDs to be sequential, please

update it immediately so that you will
not see any disruptions.

Additionally, please make sure that
your solution does not restrict any
Authorize.Net ID field to 10 characters.
If you are required to define a character
limit when storing any of our IDs, the
limit should be no less than 20
characters.

RC4 Cipher Disablement:

We hear a lot about Cyber Security
in the news these days. From
HeartBleed to LogJam, vulnerabilities
are being found every day and a need
to fix them keeps arising. To this end,
Authorize.net (and every other sane
company out there) is removing
support for a long insecure cipher suite
from their servers. This suite is RC4.
This only affects people who built
systems that specify the RC4 cipher
suite specifically, which would likely be
very old and very insecure systems.

To explain it better, secure
communications take place between
two systems using very complex and
advanced mathematics. Each year new
and better systems are developed. As
well, every year older, less secure
systems are deprecated. When you visit
a secure website with your phone or
computer the first thing that normally
happens is the two systems negotiate
on which encryption technologies to
use. Think of it like two strangers
meeting in a desert. Neither knows
what language the other speaks, so
they each write out the name of the
languages they speak in that language
on a piece of parchment. Then they

Authorize.NET Technical Updates

6/3/2016 Page 5

swap those and read. If one looks down
and can’t read a line, clearly he doesn’t
speak that language. So the strangers
choose the language they prefer and
communication starts.

With that in mind, you should know the
list that is exchanged between
machines is very long and can include
some very nasty old options. This
wasn’t seen as an issue for a long time
because browsers and servers were
smart and would decide to use the best
option available. However, in the last
couple years malicious folks have
figured out techniques to trick browsers
into asking for much weaker ‘languages’
which make it easier for those people
to learn what is being communicated.
To prevent this, Authorize.net is
completely removing the option of
using RC4 as a cipher suite. This was
done by the Firefox team in September
of 2015. Google Chrome also removed
RC4 in January 2016. Microsoft still has
yet to remove support for RC4 which is
unfortunate.

TLS Remediation for PCI DSS
Compliance:

 As you may already be aware, new
PCI DSS requirements state that all
payment systems must disable TLS 1.0
by 2018. Though it is still in finalizing
stages of plans for remediating TLS 1.0
in both sandbox and production, TLS 1.0
will be disabled in sandbox and
production in early 2017. This is to
ensure that it is compliant ahead of the
PCI date.

In addition, discussion regarding the
possibility of disabling TLS 1.1 is

happening at the same time, because
while it is not expressly forbidden,
there are enough concerns surrounding
it. TLS 1.2 is currently the strongest
available protocol, and we strongly urge
all merchants and developer partners to
use it for their API. The following
operating systems, components, and
frameworks are known to support TLS
1.2:

Windows
Server:

Version 2008 R2 and later.
(Source)

.NET:

Version 4.5 and later.
Requires Windows Server
2008 R2 SP1.(Source 1, Source
2)

OpenSSL:
Version 1.0.1 and later.
(Source)

cURL:
Version 7.34.0 and later.
(Source)

PHP:

Version 5.6 and later.
Requires OpenSSL 1.0.1 and
later. (Source)

Java:
JRE 1.7 / JDK 7 and later.
(Source)

ColdFusion:

Version 10 with JRE 1.8;
Version 11 with JRE 1.7 or
greater.(Source)

Perl:

Depends on implementation.
Net::SSLeay requires OpenSSL
1.0.1 and later.(Source)

Nginx:

Version 0.7.65/0.8.19 and
later. Requires OpenSSL 1.0.1
and later.(Source 1, Source 2)

MacOS:
Version 10.9 AKA
Mavericks.(Source)

iOS: Version 5 and later.(Source)

http://blogs.msdn.com/b/kaushal/archive/2011/10/02/support-for-ssl-tls-protocols-on-windows.aspx
http://blogs.msdn.com/b/kaushal/archive/2011/10/02/support-for-ssl-tls-protocols-on-windows.aspx
https://www.openssl.org/news/openssl-notes.html
https://www.openssl.org/news/openssl-notes.html
http://curl.haxx.se/docs/manpage.html#--tlsv12
http://curl.haxx.se/docs/manpage.html#--tlsv12
http://php.net/manual/en/migration56.openssl.php
http://php.net/manual/en/migration56.openssl.php
http://php.net/manual/en/migration56.openssl.php
https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https
https://blogs.oracle.com/java-platform-group/entry/diagnosing_tls_ssl_and_https
http://www.coldfusionmuse.com/index.cfm/2014/12/8/colfusion-jvm-versions-sslv3-tls
http://www.coldfusionmuse.com/index.cfm/2014/12/8/colfusion-jvm-versions-sslv3-tls
http://www.coldfusionmuse.com/index.cfm/2014/12/8/colfusion-jvm-versions-sslv3-tls
http://search.cpan.org/~mikem/Net-SSLeay-1.70/lib/Net/SSLeay.pod
http://search.cpan.org/~mikem/Net-SSLeay-1.70/lib/Net/SSLeay.pod
http://search.cpan.org/~mikem/Net-SSLeay-1.70/lib/Net/SSLeay.pod
https://support.apple.com/en-us/HT202854
https://support.apple.com/en-us/HT202854
https://developer.apple.com/library/ios/technotes/tn2287/_index.html

Authorize.NET Technical Updates

6/3/2016 Page 6

Android OS:

Version 4.2 and later.
Requires OpenSSL 1.0.1 and
later (bundled by
default).(Source)

Summary

The summary of the Authorize.Net
technical update is given below and it is
advised to make the updates with the
assistance of either the web developer
or the shopping cart provider.

1) Authorize.Net is now using Akamai

SureRoute to optimize our Internet
traffic routing, which includes your
transaction requests. Akamai helps
safeguard against interruptions
caused by issues beyond
Authorize.Net's direct control, such
as Internet congestion, fiber cable
cuts and other similar issues. Using
Akamai is currently optional, but
will be mandatory starting June
30th when we direct our existing
transaction URLs on our end to
connect through Akamai SureRoute.
Upgrade your website or payment
solution today, however, to take
immediate advantage of Akamai's
benefits.

2) It was previously announced about
disabling the RC4 cipher suite in the
production environment on May 31,
2016. Unfortunately, that date has
been delayed. The new date is June
13th. However, RC4 has now been
disabled in the sandbox, so you can
test your system ahead of time. If
you have a solution that relies on
RC4 to communicate with our
servers, please update it to a

current, high-security cipher as soon
as possible.

3) New PCI DSS requirements state
that all payment systems must
disable TLS 1.0 by 2018. Though it is
still in finalizing stages of plans for
remediating TLS 1.0 in both sandbox
and production, TLS 1.0 will be
disabled in sandbox and production
in early 2017

4) Due to system updates, it will be
possible to receive Authorize.Net
IDs (Transaction ID, Batch ID, etc.)
that are not in sequential order. If
your system contains any
functionality that accepts
Authorize.Net generated IDs to be
sequential, please update it
immediately. Additionally, please
make sure that your solution does
not restrict any Authorize.Net ID
field to 10 characters.

https://source.android.com/devices/tech/security/enhancements/enhancements42.html
https://source.android.com/devices/tech/security/enhancements/enhancements42.html
https://source.android.com/devices/tech/security/enhancements/enhancements42.html
https://source.android.com/devices/tech/security/enhancements/enhancements42.html

